

1

A Quick Start to Excel VBA + AI

Best Practices for AI-Assisted VBA
Coding
Why Use AI for VBA in Excel?

Reasons to Use AI Explanation

Accelerated Learning
AI can explain complex VBA concepts and syntax in
plain language, helping beginners and experienced
programmers alike.

Rapid Prototyping
AI can generate boilerplate code or script templates
in seconds, enabling you to experiment with
different solutions quickly.

Error Detection Many AI tools identify logical mistakes, typos, or
inefficiencies that are easy to overlook.

Documentation Assistance
AI automatically generates or enhances comments
and documentation for better code understanding
and maintainability.

Code Optimization
Receive suggestions for improving performance,
readability, or compatibility with different versions
of Excel.

Best Practices
• Be Specific with Prompts: When asking an AI tool to generate code, provide

detailed input. Specify what you want the macro to do, what data it should
reference, and any constraints or formatting requirements. The clearer your
request, the more accurate the output.

• Break Down Complex Tasks: For intricate VBA projects, divide your requirements
into smaller, manageable parts. Request code for each section, then integrate
and evaluate them together. This prevents confusion and helps isolate issues.

• Use AI for Code Review: Beyond code generation, use AI tools to review existing
VBA code. Ask for potential optimizations, security concerns, or suggestions for
better practices.

• Leverage Documentation Features: Some AI tools can annotate code or explain
its function. Use this to create self-explanatory macros, aiding future
maintenance.

2

A Quick Start to Excel VBA + AI

• Test Outputs Thoroughly: Always test AI-generated code in a controlled
environment before deploying it in a live spreadsheet. Check for logical errors,
compatibility, and performance issues.

• Continuously Learn from Suggestions: Treat each AI suggestion as a learning
opportunity. Research any unfamiliar code or technique the tool provides to
deepen your VBA knowledge.

• Iterate Based on Feedback: If the code doesn’t work as expected, refine your
prompt or provide additional context. AI tools often improve output quality with
more information or corrections.

• Combine Human and AI Efforts: Use AI to handle repetitive or structural tasks
and devote your expertise to customizing and refining code logic for your unique
needs.

• Stay Updated: AI models are trained on existing data and may not always include
the latest VBA features or best practices. Verify any new or unfamiliar syntax,
especially for recent Excel updates.

• Take Advantage of Community Resources: Many AI tools and platforms have
active user forums and communities. Participate to exchange tips, discover new
features, and solve unique problems.

Explore our various Excel and VBA courses!

Just getting started? Start with our Quick Start to Excel VBA + AI course.

We also offer Excel VBA Complete and Access VBA Complete for private group training!

https://greatcanadiantraining.ca/courses/microsoft-excel
https://greatcanadiantraining.ca/courses/vba-(visual-basic-for-applications)
https://greatcanadiantraining.ca/course/a-quick-start-to-excel-vba-ai
https://greatcanadiantraining.ca/course/microsoft-excel-vba-complete
https://greatcanadiantraining.ca/course/microsoft-access-vba-complete

	Best Practices for AI-Assisted VBA Coding
	Why Use AI for VBA in Excel?
	Best Practices
	 Be Specific with Prompts: When asking an AI tool to generate code, provide detailed input. Specify what you want the macro to do, what data it should reference, and any constraints or formatting requirements. The clearer your request, the more accurate the output.
	 Break Down Complex Tasks: For intricate VBA projects, divide your requirements into smaller, manageable parts. Request code for each section, then integrate and evaluate them together. This prevents confusion and helps isolate issues.
	 Use AI for Code Review: Beyond code generation, use AI tools to review existing VBA code. Ask for potential optimizations, security concerns, or suggestions for better practices.
	 Leverage Documentation Features: Some AI tools can annotate code or explain its function. Use this to create self-explanatory macros, aiding future maintenance.
	 Test Outputs Thoroughly: Always test AI-generated code in a controlled environment before deploying it in a live spreadsheet. Check for logical errors, compatibility, and performance issues.
	 Continuously Learn from Suggestions: Treat each AI suggestion as a learning opportunity. Research any unfamiliar code or technique the tool provides to deepen your VBA knowledge.
	 Iterate Based on Feedback: If the code doesn’t work as expected, refine your prompt or provide additional context. AI tools often improve output quality with more information or corrections.
	 Combine Human and AI Efforts: Use AI to handle repetitive or structural tasks and devote your expertise to customizing and refining code logic for your unique needs.
	 Stay Updated: AI models are trained on existing data and may not always include the latest VBA features or best practices. Verify any new or unfamiliar syntax, especially for recent Excel updates.
	 Take Advantage of Community Resources: Many AI tools and platforms have active user forums and communities. Participate to exchange tips, discover new features, and solve unique problems.
	Explore our various Excel and VBA courses!
	Just getting started? Start with our Quick Start to Excel VBA + AI course.
	We also offer Excel VBA Complete and Access VBA Complete for private group training!

